154 research outputs found

    Reverse Cardio-Oncology:Cancer Development in Patients With Cardiovascular Disease

    Get PDF
    This review focuses on reverse cardio‐oncology and highlights clinical studies, meta‐analyses, and cohorts that have evaluated cancer risk in patients with cardiovascular disease and the risk associated with treatments of cardiovascular disease. In addition, this article summarizes mechanisms of actions that mediate the cross-talk between cancer and cardiovascular disease

    Preclinical Models of Cancer Therapy-Associated Cardiovascular Toxicity:A Scientific Statement From the American Heart Association

    Get PDF
    Although cardiovascular toxicity from traditional chemotherapies has been well recognized for decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular sequelae has driven the emergence of cardio-oncology as a new clinical and research field. Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to include discovery of genetic and environmental risk factors that predispose to both. There is a pressing need to understand the underlying molecular mechanisms of cardiovascular toxicity to improve outcomes in patients with cancer. Preclinical cardiovascular models, ranging from cellular assays to large animals, serve as the foundation for mechanistic studies, with the ultimate goal of identifying biologically sound biomarkers and cardioprotective therapies that allow the optimal use of cancer treatments while minimizing toxicities. Given that novel cancer therapies target specific pathways integral to normal cardiovascular homeostasis, a better mechanistic understanding of toxicity may provide insights into fundamental pathways that lead to cardiovascular disease when dysregulated. The goal of this scientific statement is to summarize the strengths and weaknesses of preclinical models of cancer therapy-associated cardiovascular toxicity, to highlight overlapping mechanisms driving cancer and cardiovascular disease, and to discuss opportunities to leverage cardio-oncology models to address important mechanistic questions relevant to all patients with cardiovascular disease, including those with and without cancer.</p

    Immunomodulating Therapies in Acute Myocarditis and Recurrent/Acute Pericarditis

    Get PDF
    The field of inflammatory disease of the heart or "cardio-immunology " is rapidly evolving due to the wider use of non-invasive diagnostic tools able to detect and monitor myocardial inflammation. In acute myocarditis, recent data on the use of immunomodulating therapies have been reported both in the setting of systemic autoimmune disorders and in the setting of isolated forms, especially in patients with specific histology (e.g., eosinophilic myocarditis) or with an arrhythmicburden. A role for immunosuppressive therapies has been also shown in severe cases of coronavirus disease 2019 (COVID-19), a condition that can be associated with cardiac injury and acute myocarditis. Furthermore, ongoing clinical trials are assessing the role of high dosage methylprednisolone in the context of acute myocarditis complicated by heart failure or fulminant presentation or the role of anakinra to treat patients with acute myocarditis excluding patients with hemodynamically unstable conditions. In addition, the explosion of immune-mediated therapies in oncology has introduced new pathophysiological entities, such as immune-checkpoint inhibitor-associated myocarditis and new basic research models to understand the interaction between the cardiac and immune systems. Here we provide a broad overview of evolving areas in cardio-immunology. We summarize the use of new imaging tools in combination with endomyocardial biopsy and laboratory parameters such as high sensitivity troponin to monitor the response to immunomodulating therapies based on recent evidence and clinical experience. Concerning pericarditis, the normal composition of pericardial fluid has been recently elucidated, allowing to assess the actual presence of inflammation; indeed, normal pericardial fluid is rich in nucleated cells, protein, albumin, LDH, at levels consistent with inflammatory exudates in other biological fluids. Importantly, recent findings showed how innate immunity plays a pivotal role in the pathogenesis of recurrent pericarditis with raised C-reactive protein, with inflammasome and IL-1 overproduction as drivers for systemic inflammatory response. In the era of tailored medicine, anti-IL-1 agents such as anakinra and rilonacept have been demonstrated highly effective in patients with recurrent pericarditis associated with an inflammatory phenotype.Peer reviewe

    Apixaban for Primary Prevention of Venous Thromboembolism in Patients With Multiple Myeloma Receiving Immunomodulatory Therapy

    Get PDF
    Immunomodulatory drugs (IMiDs), including thalidomide, lenalidomide, and pomalidomide, have improved survival of patients with multiple myeloma (MM). However, these therapies are associated with an increased risk of venous thromboembolism (VTE). Apixaban has been approved for treatment of acute VTE and for risk reduction of recurrent VTE following initial therapy. In this phase IV single-arm study (NCT02958969), we aim to prospectively evaluate the safety and efficacy of apixaban for primary prevention of VTE in patients with MM. The primary efficacy objective of this trial is to determine the rate of symptomatic VTE, including deep vein thrombosis (DVT) and pulmonary embolism (PE), over 6 months. The primary safety objective is to determine the rate of major bleeding in MM patients receiving apixaban prophylaxis. If proven safe and effective, apixaban will emerge as a promising option for oral VTE prophylaxis in MM patients

    EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection

    Get PDF
    Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.Broad Institute of MIT and Harvard. SPARC ProgramBurroughs Wellcome Fun
    corecore